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Project Description

In this project, we will explore compiler-assisted mitigations for timing side
channel vulnerabilities. The research question we explore is 1) how these mit-
igations can be implemented as an LLVM pass, which can help incorporate
migitations easily, and 2) how heuristics for reducing the overhead of mitigations
behave. We will evaluate the effectiveness of these transformations by measur-
ing timing differences over a set of inputs for our microbenchmarks. Moreover,
we will measure the performance overhead of these mitigations and the reduced
overhead when we implement a heuristic described in one of the literature.
For implementation, we base our initial approach on [1]. We outline our project
goals below:

• 75% goal is to implement parts of commonly used control-flow transfor-
mations to mitigate timing side channel in LLVM.

• 100% goal is to implement compiler-based transformations that can partly
mitigate side channel attacks from data dependencies from memory access.

• 125% goal is to implement a heuristic described in one of the literature to
reduce overhead induced by our transformations above.
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Plan of Attack and Schedule

We provide a rough timeline for this project below:

3/20-3/24: Familiarize with timing side channels and transformations

3/27-3/31: Start implementing initial transformation on test programs.

4/3-4/7: Implement control flow transformations to mitigate side channels.

4/10-4/14: Start implementing other compiler-based transformations (e.g.
data flow transformations).

4/17-4/21: Perform evaluations with experiments (measuring runtime with
the implemented transformations). Look into heuristics to reduce the perfor-
mance overhead.

4/24-4/27: Write report and prepare poster for presenting.

The critical path in the schedule will be the implementation of transforma-
tions being effective against mitigating side channels. Work division will be
distributed equally.

Milestone

By the milestone, we plan to have achieved our 75% goal of implementing
control-flow transformations. We will likely be in progress of implementing
other compiler-based transformations (100% goal) by this time.

Literature Search

We have looked into literature for timing side channel attacks and related
compiler-based mitigations. Papers we explored can be found in the References
section.

Resources Needed

We will be using LLVM for implementing the compiler transformations. For
hardware, no specific setup is expected.

Getting Started

We have done some initial literature review on the project topic. We will start by
implementing a basic constant-time programming transformation with a simple
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if-else program.
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