
Compiler-Assisted Transformations for Mitigating

Timing Side Channels

Chanhee Cho, Henry Jung

1 Introduction

Side channel attacks are common in various software we use today, ranging from

cryptographic libraries, web servers, processors, etc. These side channels can

occur due to various sources such as timing, power, memory access patterns,

etc. In this project, we explored timing side channels due to control-flow and

how we may mitigate this using compiler transformations.

ApproachWe implemented a control-flow side channel mitigation (if-conversion)

using LLVM targeting the x86 architecture, based on the approaches explained

in [2] and [3]. We then explored how selectively applying transformations to

input-dependent areas affects performance, and measured the performance over-

head for our evaluation.

Related Work Molnar et al. presented a side channel mitigation based

on bit masking using source-to-source transformation [1]. Coppens et al. used

conditional execution to remove control-flow side channels, implementing their

approach in a compiler backend [2]. Jordan et al. performed a comparison

against IR-level and machine-level if-conversion implementations targeting the

TI TMS320C64x+ architecture [3].

Contributions Our main technical contributions of this project is exploring

1



one way of how mitigating timing side channels may be addressed through

implementing an IR-level if-conversion using LLVM based on past work and

evaluating its performance on benchmarks.

2 Control-Flow Transformation Implementation

2.1 If-conversion

If-conversion is a technique used to convert branches into conditional execution,

eliminating control-flow. This can be used to mitigate timing side channels

that may occur due to control-flow. Our implementation of if-conversion is

performed at the IR-level, compared to past work that has targeted the compiler

backend[2]. For predication, we make use of LLVM’s select instruction to denote

conditional execution (select is lowered into cmov by LLVM’s x86 backend code).

In our implementation, we identified common control-flow patterns that can

be converted using if-conversion (e.g. if-then triangle, if-else diamond), and

continuously apply if-conversion until no more patterns are identified in the

target code.

Figure 1: Control-flow patterns

For identifying control-flow patterns, we check if a given basic block is the

head block that matches the required basic blocks structure of a control-flow

2



pattern. We make use of our dominators pass to calculate dominators of basic

blocks, and then perform relevant checks to see if a given basic block is the head

basic block of a pattern. For example, for if-then triangle pattern, we check if

the head basic block ends with a conditional branch, the head block has two

successor blocks, the false-branch basic block has one successor block, and the

head block dominates the false-branch basic block and the tail basic block. For

if-else diamond pattern, similarly, we check if the head basic block ends with

a conditional branch, the head block has two successor blocks, both the false-

branch and true-branch basic blocks have the same successor block (tail block),

and the head block dominates the false-branch and true-branch blocks (note the

head block does not have to dominate the tail block).

For iterative if-conversion, we adapted the algorithm used in [2] for our

implementation.

Algorithm 1 If-conversion

while true do
patterns← empty list
for basic block BB in function do

if BB matches pattern then
patterns← patterns ∪ {BB}

end if
end for
converted← false
for pattern P in patterns do

headBB ← head basic block of P
tailBB ← tail basic block of P
predsBB ← branching predicate blocks of headBB
Merge predsBB into headBB
Update ϕ nodes in tailBB and successor nodes
Delete dead blocks and instructions

end for
end while

For performing if-conversion on a control-flow pattern, we first move all

instructions in the false-branch block (and true-branch block if exists) to the

3



head block, excluding any terminating branch instructions. Then, we move

instructions in the tail block to the head block. For phi node instructions in the

tail block, we replace the instruction with a SelectInst (conditional execution)

based on the branch condition from the head block. In the case of converting an

if-else diamond pattern, we want to first check if the head block dominates the

tail block. If the head block doesn’t dominate the tail block, then we need to

preserve the phi node instruction, only removing the relevant incoming values

(from false-branch and true-branch blocks) and inserting a new incoming value

coming from the head basic block (since false-branch and true-branch blocks

have been merged into head block). For our implementation, we also needed

to update the phi node entries in successors of tail blocks if the tail block

is completely merged into the head block to ensure incoming values in those

phi node entries are still valid (updated such that incoming block is now the

merged head block). Once all relevant blocks are merged, we delete any dead

basic blocks (containing instructions already merged in head block) and obsolete

instructions (e.g. old branch instruction in head block; if the tail block is not

deleted due to the head block not dominating the tail block, then we create a

new edge from the head block to the tail block).

2.2 Safe-guard Instructions

In x86, every instruction cannot be conditionally executed. Only mov instruc-

tions can be conditionally executed (CMOV ). When performing if-conversion,

some unsafe instructions such as division or loads/stores may cause exceptions

or affect correctness. Thus, for these instructions, we insert ”safe-guard instruc-

tions” to preserve program behavior. For division instructions (isIntDivRem),

we insert a conditional execution instruction beforehand that sets the divisor

to be 1 if the branch is not taken (if branch is taken, sets to the expected

4



value). Similarly, for loads/stores (LoadInst, StoreInst), we insert a conditional

execution instruction beforehand to perform the memory operation from a tem-

porary valid memory location (created using AllocaInst), ensuring safe memory

accesses. We also need to consider function calls (CallInst) as some functions

may only execute conditionally during execution. To handle this, we duplicate

the function that should be conditionally executed, adding an additional pa-

rameter that indicates whether instructions in the function should be executed

or not (depending on the condition). For any store instructions within the du-

plicated function, we perform the same conditional store approach from before

to ensure program behavior is preserved.

2.3 Microbenchmarks

We performed initial testing on a series of microbenchmarks consisting of dif-

ferent conversion patterns, nested control-flow branches, and handling unsafe

instructions. A subset of the microbenchmarks with LLVM IR transformations

performed are shown in Figures 2-4.

(a) Before Transformation (b) After Transformation

Figure 2: Microbenchmark (nested control-flow): LLVM IR transformation

5



(a) Before Transformation (b) After Transformation

Figure 3: Microbenchmark (division): LLVM IR transformation

(a) Before Transformation (b) After Transformation

Figure 4: Microbenchmark (memread): LLVM IR transformation

3 Experimental Setup

3.1 Performance

We evaluated our implementation by measuring the performance overhead of

common functions that may be used in cryptographic libraries, such as modular

exponentiation which may be susceptible to timing side channels. We chose

three target programs implementing these functions for our benchmarks shown

in Table 1.

For performance metrics, we measured the runtime and number of LLVM

instructions dynamically executed, comparing the original program (baseline)

6



Benchmark Description

modexp 32-bit modular exponentiation
montmul 32-bit montgomery reduction
pointmul elliptic curve point multiplication

Table 1: Benchmarks

and if-converted program. Our benchmarks were run on a machine with Intel

i7-10510U processor. For our experiments, we compiled using -O0 optimization

level to avoid any if-conversion that LLVM may already perform (e.g. through

its SimplifyCFG pass). For each benchmark, we randomly generated input

parameters using a LCG with same seed and performed the computation across

105 iterations in a single run. We also verified the outputs matched for both

original and if-converted programs to ensure correctness of the transformations.

3.2 Selective Conversion

Another area we explored for our evaluation is how our compiler transforma-

tion pass can be optimized using static taint analysis by selectively applying

if-conversion to conditional branches that are input dependent. Our approach

requires specifying source annotations in the source code to identify the variables

that should be marked as secret. We implemented the taint analysis compo-

nent using our dataflow analysis framework, implemented as an intraprocedural

analysis pass.

For benchmarks, we chose two target programs relying on secret input shown

in Table 2. Given that if-conversion generally leads to better performance, we

designed the benchmarks to represent a hypothetical scenario where selectively

performing if-conversion may lead to better optimizations; specifically, we have

a non-secret dependent branch containing code that may not typically be taken

in a normal execution but performs a lot of unnecessary computation (and is

7



not optimized out). In our benchmarks, we annotated any input-dependent pa-

rameters in the source code. Our evaluation compares the performance of three

different versions of the benchmarks: original program (baseline), if-converted

program, and selectively if-converted program (using taint analysis).

Benchmark Description

passwd check password checker program
ecdsa elliptic curve DSA

Table 2: Benchmarks (Using Selective Conversion)

4 Experimental Evaluation

We found that the if-converted program led to better performance with faster

runtime despite having an increase in instruction count. The benchmark results

are shown in Figure 5 below. These results are contrary to results from [2]

(from 2009) which reported if-converted benchmarks to have significantly longer

execution times. However, our results align with what we would expect on

modern processors as due to if-conversion removing control flows, it leads to

eliminating need for branch prediction and allows for better use of instruction-

level parallelism.

(a) Runtime (b) Instruction Count

Figure 5: Benchmark Measurements

We also found that selectively performing if-conversion can benefit perfor-

mance for some applications, as shown in Figure 6. This aligns with what we

8



would expect as converting all branches (versus only converting certain required

branches) may not always be optimal as both parts of the branches are condi-

tionally executed by the program after conversion. Note the benchmarks were

designed to represent a hypothetical scenario as mentioned in the experimental

setup; however this experiment demonstrates that selective if-conversion can be

beneficial for some programs.

Figure 6: Benchmark Measurements (Using Selective Conversion)

5 Conclusion

5.1 Surprises and Lessons Learned

Through this project, we applied our learnings from this course to implement

compiler transformations using LLVM to address security issues (side channel

attacks), and also explored how selectively perfoming conversion may benefit

in some cases. We were surprised to find that if-conversion can actually lead

to better performance in modern processors, and not just serve as a means for

side channel mitigation. Overall, we found this project an interesting area to

explore.

9



5.2 Future Work

Future areas to explore outside this project may be determining optimal sce-

narios for performing if-conversion, while still mitigating against side channels.

Also, learning more about and implementing mitigations for modern side chan-

nels (not limited to timing) using compiler passes would also be an interesting

area to explore.

5.3 Distribution of Total Credit

50-50

References

[1] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2005.

The program counter security model: automatic detection and removal of

control-flow side channel attacks. In Proceedings of the 8th international

conference on Information Security and Cryptology (ICISC’05). Springer-

Verlag, Berlin, Heidelberg, 156–168. https://doi.org/10.1007/11734727 14

[2] B. Coppens, I. Verbauwhede, K. De Bosschere and B. De Sutter, ”Practical

Mitigations for Timing-Based Side-Channel Attacks on Modern x86 Pro-

cessors,” 2009 30th IEEE Symposium on Security and Privacy, Oakland,

CA, USA, 2009, pp. 45-60, doi: 10.1109/SP.2009.19.

[3] Alexander Jordan, Nikolai Kim, and Andreas Krall. 2013. IR-level ver-

sus machine-level if-conversion for predicated architectures. In Proceedings

of the 10th Workshop on Optimizations for DSP and Embedded Systems

(ODES ’13). Association for Computing Machinery, New York, NY, USA,

3–10. https://doi.org/10.1145/2443608.2443611

10


